Open Source CFD Consulting

0

OpenFOM의 사소한... 문제들

Porous Media

간단한 문제

속도가 이상하다...

나만 그런가...?

Home	News	Forums	Wiki l	Links Jobs	Events	Tools	Feeds	About	Search			
Home >	Forums > Softwa	re User Foru	ms > OpenFOAM	> OpenFOAM Runnin	g, Solving & C	=D						
ро	rousSiı	mpleF	⁼ oam: o	scillating	veloc	ity in	the po	orous	zone		Welcome, You last vis Private Me	ivywalker. sited: Today at 02:21 ssages: Unread 0, Total 0.
	USER PANEL	BLOGS	I FAQ	Соммилат	9	New Posts	7	UPDATED	Threads 🤝		Quick Links 🤝	Log Out
	Post Reply	04:49	porousSimpleF	- oam: oscillating vel	ocity in the p	orous zone			ЦикВаск 😎	Thread Tools 🄝 Search	ch this Thread 🤝 Rate Th	PAGE 1 OF 2 1 2 2 READ DISPLAY MODES 7 #1
See New Join Posi Rep	9a v Member gei D. Date: Mar 2009 ts: 4 Power: 0	H I S S S S S S S S S S S S S S S S S S	Iello! try to use a po slip' for simplici free flow inflow	prousSimpleFoam s ity): walls angleDictImplicit. a good p, but stran- rutured mesh:	olver to simi prous zone ou ge oscillating	ulate a flow	in a 2D ch	annel from tv	vo equal parts	, a free flow part an	d a porous part (wall	's type set in the

.

• 1 m³ 정육면체 Cell 들로 이루어진 1차원 덕트

- 비압축성 & 비점성 유체

안풀어봐도 답을 알수 있다...

이걸 못 맞추네....

정답

0

10th OKUCC

안풀어봐도 아는 답

$$\vec{n} \cdot (\nabla p)_{f} = -5$$

$$u_{1} = 1$$

$$p_{1} = 30$$

$$(\nabla p_{x})_{1} = 0$$

$$d_{1} = 1$$

$$H_{1} = 1$$

$$u_{2} = 1$$

$$p_{2} = 25$$

$$(\nabla p_{x})_{2} = -10$$

$$d_{N} = 0.5$$

$$d_{N} = 0.5$$

$$U_{1} = 1$$

$$U_{1} = 1$$

$$d_{P} = 0.5$$

$$d_{N} = 0.5$$

$$U_{2} = 1$$

$$H_{2} = 1$$

p_f 는 왜 필요한가

- Cell centroid의 pressure gradient를 구하기 위해서
 - Gauss gradient scheme

$$(\nabla p)_P = \frac{1}{V_P} \sum_f p_f \vec{S}_f$$

OpenFOAM 에서 p_f 를 계산하는 방법

• Linear interpolation

fvSchemes	
:	
gradSchemes	
{	
default	Gauss linear;
limited	cellLimited Gauss linear 1.0;
}	
:	

• 또는

\$FOAM SRC/finiteVolume/interpolation/surfaceInterpolation/schemes							
biLinearFit	FitData	localMax	quadraticLinearPureUpwindFit				
cellCoBlended	fixedBlended	localMin	quadraticLinearUpwindFit				
CentredFitScheme	harmonic	LUST	quadraticUpwindFit				
clippedLinear	limiterBlended	midPoint	reverseLinear				
CoBlended	linear	outletStabilised	skewCorrected				
cubic	linearFit	pointLinear	UpwindFitScheme				
cubicUpwindFit	linearPureUpwindFit	PureUpwindFitScheme	weighted				
deferredCorrection	linearUpwind	quadraticFit	weightedFlux				
downwind	localBlended	quadraticLinearFit					

Linear interpolation으로 p_f 를 구하면

 $p_f = 27.5$

$$(\nabla p_x)_1 = \frac{1}{V_1} \sum_f p_f S_f = -2.5$$
 ×
 $(\nabla p_x)_2 = \frac{1}{V_2} \sum_f p_f S_f = -7.5$ ×

0

10th OKUCC

불연속적인 압력구배를 구현하려면

- Porous Media의 바깥쪽 경계는 압력에 대해서 벽면처럼 작용해야 한다.
 - zeroGradient 경계조건?
- Internal Face이므로 경계조건으로 처리할수 없음

- 특별한 Interpolation 방법을 사용해야 함

$$p_f = \frac{1}{2}(p_1 + p_2) + \frac{1}{2}\{\vec{r}_1 \cdot (\nabla p^*)_1 + \vec{r}_2 \cdot (\nabla p^*)_2\}$$

$\operatorname{OpenFOAM}$ 에서 ϕ_f 를 계산하는 방법

• 일단 linear interpolation

```
pEqn.H
  volScalarField rAU(1.0/UEqn.A());
  surfaceScalarField phiHbyA("phiHbyA", fvc::flux(HbyA));
  tmp<volScalarField> rAtU(rAU);
                                                                     \phi_f = \left\{ \vec{S}_f \cdot \left(\frac{\vec{H}}{a}\right)_f - \overline{\left(\frac{\vec{V}}{a}\right)_f} \, \left| \vec{S}_f \right| \left( \vec{n} \cdot (\nabla p)_f \right) \right\}
  // Non-orthogonal pressure corrector loop
  while (simple.correctNonOrthogonal())
   {
       fvScalarMatrix pEqn
        (
                                                                                          linear interpolate
             fvm::laplacian(rAtU(), p) == fvc::div(phiHbyA)
       );
       if (simple.finalNonOrthogonalIter())
        {
            phi = phiHbyA - pEqn.flux();
       ł
  }
```

Linear interpolation으로 ϕ_f 를 구하면

• Linear interpolation

$$\phi_f = \frac{d_2}{d_1 + d_2} \left(\frac{H_1}{a_1} \right) + \frac{d_1}{d_1 + d_2} \left(\frac{H_2}{a_2} \right) - \left\{ \frac{d_2}{d_1 + d_2} \left(\frac{V_1}{a_1} \right) + \frac{d_1}{d_1 + d_2} \left(\frac{V_2}{a_2} \right) \right\} \left\{ \vec{n} \cdot (\nabla p)_f \right\}$$

$$= \frac{1}{2} \left(\frac{H_1}{a_1} + \frac{H_2}{a_2} \right) - \frac{1}{2} \left(\frac{V_1}{a_1} + \frac{V_2}{a_2} \right) \{ \vec{n} \cdot (\nabla p)_f \}$$
$$= 3.27272727 \dots \qquad \bigstar$$

.

생각해 볼수 있는 것들

- Interpolation weighting factor를 정의하는 근거
 - Cell center와 face center의 거리(d_1, d_2) ?
 - Cell volume(V_1, V_2) ?
 - 압력구배의 불연속((∇p)₁, (∇p)₂)?
 - porous media 모델의 momentum source는 그 자체로 압력구배를 표현하고 있다.

$$\nabla p = -\boldsymbol{C_0} \left| \boldsymbol{\overline{U}} \right|^{(\boldsymbol{C_1}-1)} \boldsymbol{\overline{U}}$$

• *a*₁, *a*₂는 운동량보존방정식에서 선형화한 momentum source의 계수를 포함하고 있다.

$$a_1 = \sum_f (w_f \phi_f), \qquad a_2 = \sum_f (w_f \phi_f) + \boldsymbol{C_0} |\boldsymbol{\vec{U}}|^{(\boldsymbol{C_1}-1)}$$

Weighting factor를 역으로 구해보면...

$$\phi_f = w\left(\frac{H_1}{a_1}\right) + (1-w)\left(\frac{H_2}{a_2}\right) - \left\{w\left(\frac{V_1}{a_1}\right) + (1-w)\left(\frac{V_2}{a_2}\right)\right\}\left\{\vec{n}\cdot(\nabla p)_f\right\}$$

$$w = \frac{\phi_f - \left[\frac{H_2}{a_2} - \left(\frac{V_2}{a_2}\right)\{\vec{n} \cdot (\nabla p)_f\}\right]}{\frac{H_1}{a_1} - \frac{H_2}{a_2} - \left(\frac{V_1}{a_1} - \frac{V_2}{a_2}\right)\{\vec{n} \cdot (\nabla p)_f\}}$$

porous media iterface를 압력에 대한 경계면처럼 생각하면...

$$\vec{n} \cdot (\nabla p)_f = \frac{d_2}{d_1 + d_2} (\nabla p)_2$$

$$w=\frac{a_1d_1}{a_1d_1+a_2d_2}$$

2차원 덕트 해석

이상했던 문제

NEXT*f***o**am

0

10th OKUCC

이상했던 문제

.

Radiative Heat Flux가 있는 경계면의 온도 경계조건

fvDOM 모델에 투과 및 굴절 구현

- 45° 기울어진 Glass의 경사면에 Radiation Flux 조사
 - Fresnel's Relation에 따른 투과 및 반사가 일어남을 확인
 - Snell's Law로 계산된 굴절각과 정확히 일치하며 굴절됨을 확인

NEXTfoam

간단한 복사열전달 문제

- 10000 W/m²의 열을 발산하는 열원을 둘러싼 Box
- 열원을 제외한 모든 외벽은 300 K의 외부와 대류열전달(h = 10 W/m²K)

외벽의 온도경계조건

• under-relax를 하지 않으면 발산...

(

에너지방정식에 대한 벽면 경계조건

- Example: External Wall에 대한 대류열전달 경계조건
 - Radiative Heat Flux가 없는 경우

T_b : temperature at wall boundary(경계조건)

 $q = k_P \frac{T_P - T_b}{\Delta x} = h(T_b - T_a)$: energy balance on a boundary

$$T_b = fT_a + (1-f)T_P$$
, $f = \frac{h}{h + \frac{k_P}{\Delta x}}$

에너지방정식에 대한 벽면 경계조건

- Example: External Wall에 대한 대류열전달 경계조건
 - Radiative Heat Flux가 있는 경우
 - Energy balance에 radiative heat flux가 포함되어야 한다

 $q = k_P \frac{T_P - T_b}{\Delta x} + q_{rad} = h(T_b - T_a)$: energy balance on a boundary

$$T_b = f \frac{hT_a + q_{rad}}{h} + (1 - f)T_P$$
, $f = \frac{h}{h + \frac{k_P}{\Delta x}}$

Radiative Heat Flux의 계산

- 이론적으로 모든 Radiative Intensity의 벽면에 수직인 성분을 전체 입체각(Solid Angle)에 대하여 적분한 값
 - Grey radiation에 대하여 벽면에서의 Radiative Heat Flux(*q_{rad}*)는 다음과 같이 성분을
 나누어 생각할 수 있다

q_{rad} 를 에너지방정식의 경계조건에 반영

- 기존 OpenFOAM Library의 방법
 - Radiative Intensity Equation들을 계산한 후 q_{rad}를 다음 식을 이용해서 계산

 $q_{rad} = \varepsilon q_{in} - n^2 \varepsilon \sigma (T_b^*)^4$

$$q_{in} = \int\limits_{4\pi} I^I \hat{s} \cdot \hat{n} \, d\Omega \,, \qquad \hat{s} \cdot \hat{n} \ge 0$$

T^{*}_b 는 에너지방정식의 이전 iteration에서 계산된 경계면의 온도

- 위와 같이 계산된 q_{rad}의 값을 에너지방정식의 경계조건식에 그대로 대입

$$T_b = f \frac{hT_a + q_r}{h} + (1 - f)T_P$$
, $f = \frac{h}{h + \frac{k_P}{\Lambda r}}$

기존 방식의 문제점

 앞의 식에서 에너지방정식의 경계조건식에 나타나는 q_{rad} 를 계산식의 형태로 다시 쓰면 다음과 같다

$$T_b = f \frac{hT_a + \varepsilon q_{in} - n^2 \varepsilon \sigma (T_b^*)^4}{h} + (1 - f)T_P, \qquad f = \frac{h}{h + \frac{k_P}{\Delta x}}$$

- 이 경우 *T_b*의 변화는 매 iteration 마다 *T^{*}_b*의 네제곱에 비례하는 flux의 영향을
 받기때문에 매우 불안정하며, 열원과 주변의 <u>온도차가 큰 경우 *q_{rad}*의 값에 under-</u>
 relaxation을 적용해야 한다
- <u>열원과 주변 온도차가 수백K에 이르면 과도한 under-relaxation factor를 적용해야만</u>
 계산이 가능하며 이 경우 수렴성이 너무 낮아져서 사실상 사용할수 없는 경계조건이 된다

문제 해결 방안

- 선형화(Linearization)
 - 경계면 온도의 네제곱(T_b^4)으로 표현된 q_{rad} 에 대한 식을 T_b 에 대해 선형(1차식)이 되도록 수정
 - *T_b*의 이전 iteration 값(*T^{*}_b*)에 대한 의존성의 크기를 줄이고 에너지 방정식을 이산화한 Matrix의 대각지배성(diagonal dominance) 을 강화하여 계산 안정성 향상
 - 일반적인 함수 f(x)의 선형화 방법

$$f(x) = f^* + \left(\frac{\partial f}{\partial x}\right)^* (x - x^*)$$

 x^* 는 이전 iteration에서 계산된 값

$$f^* = f(x^*)$$
$$\left(\frac{\partial f}{\partial x}\right)^* = \frac{\partial f(x^*)}{\partial x}$$

Radiative Heat Flux 선형화

• q_{rad}를 경계면 온도 T_b에 대한 식으로 표현

 $q_{rad}(T_b) = \varepsilon q_{in} - n^2 \varepsilon \sigma T_b^4$

$$\left(\frac{\partial q_r}{\partial T_b}\right)^* = -4n^2\varepsilon\sigma(T_b^*)^3$$

- 위의 식으로부터 선형화된 Radiative Heat $Flux(q_{rad}^{L})$ 를 표현하면 다음과 같다

$$q_{rad}^{L} = \varepsilon q_{in} - n^2 \varepsilon \sigma (T_b^*)^4 - 4n^2 \varepsilon \sigma (T_b^*)^3 (T_b - T_b^*)$$
$$= \varepsilon q_{in} + 3n^2 \varepsilon \sigma (T_b^*)^4 - 4n^2 \varepsilon \sigma (T_b^*)^3 T_b$$

에너지방정식의 경계조건에 반영

• 선형화된 Radiative Heat Flux 를 반영한 온도 경계조건

- 앞에서 표현한 선형화된 q_{rad}^L 을 이용해 Energy Balance를 표현

$$q = k_P \frac{T_P - T_b}{\Delta x} + q_{rad}^L = h(T_b - T_a)$$

$$k_P \frac{T_P - T_b}{\Delta x} + \varepsilon q_{in} + 3n^2 \varepsilon \sigma (T_b^*)^4 - 4n^2 \varepsilon \sigma (T_b^*)^3 T_b = h(T_b - T_a)$$

위의 식을 정리하면 Radiative Heat Flux를 반영한 External Wall의 대류열전달
 경계조건은 다음과 같이 쓸수 있다

$$T_{b} = f \frac{hT_{a} + \varepsilon q_{in} + 3n^{2} \varepsilon \sigma (T_{b}^{*})^{4}}{h + 4n^{2} \varepsilon \sigma (T_{b}^{*})^{3}} + (1 - f)T_{P}, \qquad f = \frac{h + 4n^{2} \varepsilon \sigma (T_{b}^{*})^{3}}{h + \frac{k_{P}}{\Delta x} + 4n^{2} \varepsilon \sigma (T_{b}^{*})^{3}}$$

Radiative Heat Flux 선형화 효과

• 수렴성 비교

Convergence of Energy Equation

Convergence of Intensity Equation

CHT Solver의 에너지 수렴성

.

단순 열전도 문제

• 물성이 다른 두개의 Solid

GRID1

Π

-

•

•

격자에 따른 수렴성

non-orthogonal correction

• mappedWall은 region 경계면

- non-orthgonal correction이 적용되는 경계면은?
 - processor boundary
 - cyclic boundary

.

- OpenFOAM의 loop control libraries
 - 클래스 계층 구조

- 각 솔버마다 해당 클래스 타입의 객체를 생성하여 loop control
 - buoyantSimpleFoam => simpleControl
 - check max iterations, non-orthogonal correction loop, convergence
 - buoyantPimpleFoam => pimpleControl
 - check max inner-iterations, pressure correction loop, non-orthogonal correction loop, convergence of inner-iterations
 - chtMultiRegionFoam => ???
 - simpleControl이나 pimpleControl 클래스는 multi-region을 지원하지 않음
 - 최신 버전 OpenFOAM에서는 솔버의 <u>소스코드에 하드코딩</u>으로 구현되어 있지만 simpleControl이나 pimpleControl클래스의 control 알고리즘과 다름

- Multi-region loop control libraries 개발
 - 두개의 독립적인 클래스로 개발
 - solutionControl 클래스와 상속관계가 아님
 - 클래스
 - multiRegionSimpleControl
 - multiRegionPimpleControl
 - 생성자 함수에 각 region에 대한 fvMesh 객체의 포인터 리스트를 전달

- Multi-region loop control libraries 개발
 - 멤버함수에서는 생성자에서 전달받은 모든 region에 대해서 looping 지속 여부를 판단

```
bool Foam::NEXT::multiRegionPimpleControl::criteriaSatisfied()
   bool checkedAndAchieved = true;
    forAll(regions, regionI) // 모든 region에 대한 looping
       const fvMesh* mesh(regions [regionI]);
        List<fieldData>& residualControl(residualControls [regionI]);
       if ((corr == 1) || residualControl.empty() || finalIter())
        bool storeIni = this->storeInitialResiduals();
        . . .
```

- Multi-region loop control 기능 검증 #1
 - single-region 솔버와 multi-region 솔버로 같은 문제를 해석
 - MRF 영역을 포함한 자연대류 문제
 - Multi-region 솔버에서 <u>solid region을 풀지 않도록 설정</u>하고 single-region 솔버와 같은 거동을 하는지 확인

• Multi-region loop control 기능 검증 #1

- 1초까지 해석후 residual 비교

PIMPLE: iteration 5	So
DILUPBiCGStab: Solving for Ux, Initial residual = 0.0001018948155195254,	DI
Final residual = 1.931787992241496e-07, No Iterations 1	Fi
DILUPBiCGStab: Solving for Uy , Initial residual = 5.577468656968949e-05,	DI
Final residual = 8.975777426222258e-08, No Iterations 1	Fi
GAMGPCG: Solving for p rgh, Initial residual = 0.02298659441267836, Final	GA
	re
GAMGPCG: Solving for p rgh , Initial residual = 0.00108468265244804, Final	GA
residual = 7.691586762727594e-05, No Iterations 1	re
DILUPBiCGStab: Solving for epsilon, Initial residual = 1.17761647989896e-	л
05, Final residual = 2.908488217663309e-07, No Iterations 1	0.5
DILUPBICCStab: Solving for k . Initial residual = $6.806336675700609e-06$.	דת
Final residual = $2.074380896992685e-07$ No Iterations 1	
diagonal. Colving for the Initial residual = 0. Final residual = 0. No	,
tragonal: Solving for filo, filitial residual - 0, filial residual - 0, No	a1
	It
GAMGPBiCGStab: Solving for h , Initial residual = 6.143298845904801e-06,	GA
Final residual = 3.478449934155415e-12, No Iterations 1	Fi
Min/max T:350 373	Mi
time step continuity errors : sum local = 0, global = 0, cumulative = 0	ti
PIMPLE: converged in 5 iterations	PI
ExecutionTime = 95.97 s ClockTime = 96 s	Ex
Inner-iteration	
End	En

PIMPLE: iteration 5

lving for fluid region fluid nal residual = 1.931787992241496e-07, No Iterations 1 LUPBiCGStab: Solving for Uy, Initial residual = 5.577468656968949e-05, nal residual = 8.975777426222258e-08, No Iterations 1 MGPCG: Solving for p rgh, Initial residual = 0.02298659441267836, Final MGPCG: Solving for **p rgh**, Initial residual = 0.00108468265244804, Final sidual = 7.691586762727594e-05, No Iterations 1 LUPBiCGStab: Solving for epsilon, Initial residual = 1.17761647989896e-Final residual = 2.908488217663309e-07, No Iterations 1 LUPBiCGStab: Solving for \mathbf{k} , Initial residual = 6.806336675700609e-06, nal residual = 2.074380896992685e-07, No Iterations 1 agonal: Solving for rho, Initial residual = 0, Final residual = 0, No erations 0 MGPBiCGStab: Solving for h, Initial residual = 6.143298845904801e-06, nal residual = 3.478449934155415e-12, No Iterations 1 n/max T:350 373 me step continuity errors : sum local = 0, global = 0, cumulative = 0 IPLE: converged in 5 iterations ecutionTime = 99.2900000000001 s ClockTime = 99 s

buoyantPimpleNFoam

chtMultiRegionPimpleNFoam

- Multi-region loop control 기능 검증 #1
 - 해석 결과 : 1초 후 속도 분포

chtMultiRegionPimpleNFoam

buoyantPimpleNFoam

- Multi-region loop control 기능 검증 #2
 - 검증 #1과 같은 문제를 solid 영역을 포함하여 multi-regionc 슐베로 해석
 - inner-iteration의 convergence criterion에 따라 multi-region loon control 이 잘 작동하는지 확인
 - pressure : 1e-3
 - momentum : 1e-3
 - turbulence : 1e-3
 - energy : 1e-6

chtMultiRegionPimpleNFoam

- Multi-region loop control 기능 검증 #2
 - 1초까지 해석후 residual 확인

PIMPLE: iteration 8

Solving for fluid region fluid

DILUPBiCGStab: Solving for Ux, Initial residual = 3.478702854484385e-05, Final residual = 7.09742724106769e-08, No Iterations 1 DILUPBiCGStab: Solving for Uy, Initial residual = 1.969297275762624e-05, Final residual = 2.781589205683131e-08, No Iterations 1 GAMGPCG: Solving for p_rgh, Initial residual = 0.01156233594243819, Final residual = 0.0003010856380198718, No Iterations 1 GAMGPCG: Solving for p_rgh, Initial residual = 0.0004480591768750711, Final residual = 3.495684054473972e-05, No Iterations 1 DILUPBiCGStab: Solving for epsilon, Initial residual = 2.574343607527129e-06, Final residual = 7.055973106906398e-08, No Iterations 1 DILUPBiCGStab: Solving for k, Initial residual = 1.320877134103976e-06, Final residual = 4.425784430245165e-08, No Iterations 1 diagonal: Solving for rho, Initial residual = 0, Final residual = 0, No Iterations 0 GAMGPEiCGStab: Solving for h, Initial residual = 9.071476042475182e-07, Final residual = 4.887913235950798e-13, No Iterations 1

Solving for solid region solid GAMGPBiCGStab: Solving for h, Initial residual = 7.478312571284788e-10. Final residual = 2.71954188417007e-26, No Iterations 1 PIMPLE: iteration 9

Solving for fluid region fluid

DILUPBICGStab: Solving for Ux, Initial residual = 2.453929304335645e-05, Final Asidual = 5.133687330153424e-08, No Iterations 1 DILUPBICGStab: Solving for Uy, Initial residual = 1.429085296256882e-05, Final residual = 1.944790763298906e-08, No Iterations 1

GAMGPCG: Solving for p_rgh, Initial residual GAMGPCG: Solving for p_rgh, Initial residual DILUPBiCGStab: Solving for epsilon, Initial DILUPBiCGStab: Solving for k, Initial residu diagonal: Solving for rho, Initial residual GAMGPBiCGStab: Solving for h, Initial residu

Solving for solid region solid GAMGPBiCGStab: Solving for h, Initial residua Min/max T:313.2765107569926 350.0907069840727

PIMPLE: converged in 9 iterations 🚄----

fluid region의 energy equation이 마지막으로 criterion을 만족하면서 8번째 inner-iteration에서 수렴되었지만 time accuracy를 위해 pressure under-relaxation 없이 한번 더 iteration

10th OKUCC

erations 1

- Multi-region loop control 기능 검증 #2
 - 해석 결과 : 1초 후 속도 및 온도 분포

속도 분포